首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6605篇
  免费   1832篇
  国内免费   896篇
化学   3357篇
晶体学   130篇
力学   282篇
综合类   58篇
数学   171篇
物理学   5335篇
  2024年   8篇
  2023年   59篇
  2022年   98篇
  2021年   167篇
  2020年   192篇
  2019年   145篇
  2018年   167篇
  2017年   237篇
  2016年   282篇
  2015年   199篇
  2014年   352篇
  2013年   1204篇
  2012年   461篇
  2011年   524篇
  2010年   414篇
  2009年   445篇
  2008年   469篇
  2007年   475篇
  2006年   463篇
  2005年   447篇
  2004年   383篇
  2003年   336篇
  2002年   285篇
  2001年   203篇
  2000年   196篇
  1999年   146篇
  1998年   152篇
  1997年   111篇
  1996年   93篇
  1995年   87篇
  1994年   80篇
  1993年   98篇
  1992年   77篇
  1991年   51篇
  1990年   40篇
  1989年   35篇
  1988年   16篇
  1987年   22篇
  1986年   19篇
  1985年   18篇
  1984年   12篇
  1983年   9篇
  1982年   20篇
  1981年   7篇
  1980年   9篇
  1979年   5篇
  1978年   2篇
  1977年   6篇
  1973年   2篇
  1959年   1篇
排序方式: 共有9333条查询结果,搜索用时 29 毫秒
1.
We investigate the possibility of phantom crossing in the dark energy sector and the solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the Cosmic Microwave Background (CMB), local measurement of Hubble constant (H0), Baryon Acoustic Oscillation (BAO) and SnIa for this purpose. For a combination of CMB+BAO data that is related to early universe physics, phantom crossing in the dark energy sector was confirmed at a 95% confidence level and we obtained the constraint H0=71.03.8+2.9 km/s/Mpc at a 68% confidence level, which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combinations of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtained the constraint H0=70.25±0.78 km/s/Mpc at a 68% confidence level and the phantom crossing happening at the scale factor am=0.8510.031+0.048 at a 68% confidence level.  相似文献   
2.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
3.
Zilu Cao 《中国物理 B》2022,31(11):118701-118701
Although the significant roles of magnetic induction and electromagnetic radiation in the neural system have been widely studied, their influence on Parkinson's disease (PD) has yet to be well explored. By virtue of the magnetic flux variable, this paper studies the transition of firing patterns induced by magnetic induction and the regulation effect of external magnetic radiation on the firing activities of the subthalamopallidal network in basal ganglia. We find: (i) The network reproduces five typical waveforms corresponding to the severity of symptoms: weak cluster, episodic, continuous cluster, episodic, and continuous wave. (ii) Magnetic induction is a double-edged sword for the treatment of PD. Although the increase of magnetic coefficient may lead the physiological firing activity to transfer to pathological firing activity, it also can regulate the pathological intensity firing activity with excessive β-band power transferring to the physiological firing pattern with weak β-band power. (iii) External magnetic radiation could inhibit continuous tremulous firing and β-band power of subthalamic nucleus (STN), which means the severity of symptoms weakened. Especially, the bi-parameter plane of the regulation region shows that a short pulse period of magnetic radiation and a medium level of pulse percentage can well regulate pathological oscillation. This work helps to understand the firing activity of the subthalamopallidal network under electromagnetic effect. It may also provide insights into the mechanisms behind the electromagnetic therapy of PD-related firing activity.  相似文献   
4.
By applying advanced telecommunication solid state devices to microwave (MW) resonant cavity system for flow chemistry, it becomes possible to heat up low polarity solvents higher than 250 C, that are considered impossible to heat up by MW until now. The resonant cavity system is opening new process windows to production processes of specialty chemicals which require low cost, high yield and high productivity.  相似文献   
5.
Carbon dots possess versatile optical properties that have prompted their investigation in applications including photocatalysis, photovoltaics, imaging, and drug delivery, among others. However, the preparation of these nanodots is accompanied by the formation of fluorophores and intermediates, which can be difficult to separate. In the absence of thorough purification protocols, the reported optical properties are often heterogeneous, which hinders understanding of their physicochemical and optical properties and concrete application development. Here, two hydrophilic carbon dot systems starting with citric acid and diethylenetriamine are prepared. The impact of purification, including dialysis, ultrafiltration, and organic washes, on the properties of the dots is demonstrated. It is shown that monitoring the purification endpoint using near-infrared, fluorescence, and absorbance spectroscopies is possible. Moreover, it is demonstrated that fluorescence quantum yields can be a reliable tool to determine the purification endpoint. This work shows that even carbon dots derived from the same chemical precursors can have different purification profiles and purification requirements. However, the developed approach can be used to determine the proper purification procedure and endpoint for any carbon dot system regardless of the starting materials. Finally, it is envisioned that this work can be easily extended toward the purification of other hydrophilic nanomaterials.  相似文献   
6.
针对水下椭球粒子,以声散射理论为基础,采用分波序列的方法,建立了椭球粒子声辐射力的理论计算模型。进而根据声辐射力计算公式,以刚性椭球粒子和液体椭球粒子为例,计算并分析不同Bessel波束作用下椭球粒子的轴向声辐射力函数特征。数值仿真计算结果表明,对于刚性椭球粒子,扁平椭球粒子相对于细长椭球粒子更有助于激发负声辐射力;对于液体椭球粒子,细长椭球粒子相对于扁平椭球粒子更加容易产生负声辐射力;对于不同介质的椭球粒子,不同的入射波束激发的负声辐射力的效果也存在明显的差异。该结果为复杂的尺寸和介质粒子声操控技术提供了理论的可行性。  相似文献   
7.
The accurate prediction of the solar diffuse fraction (DF), sometimes called the diffuse ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse irradiance research is discussed and then three robust, machine learning (ML) models are examined using a large dataset (almost eight years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid adaptive network-based fuzzy inference system (ANFIS), a single multi-layer perceptron (MLP) and a hybrid multi-layer perceptron grey wolf optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various solar and DF irradiance data, from Spain. The results were then evaluated using frequently used evaluation criteria, the mean absolute error (MAE), mean error (ME) and the root mean square error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance in both the training and the testing procedures.  相似文献   
8.
According to a corrected dispersion relation proposed in the study on the string theory and quantum gravity theory, the Rarita-Schwinger equation was precisely modified, which resulted in the Rarita-Schwinger-Hamilton-Jacobi equation. Using this equation, the characteristics of arbitrary spin fermion quantum tunneling radiation from non-stationary Kerr-de Sitter black holes were determined. A number of accurately corrected physical quantities, such as surface gravity, chemical potential, tunneling probability, and Hawking temperature, which describe the properties of black holes, were derived. This research has enriched the research methods and enabled increased precision in black hole physics research.  相似文献   
9.
《Current Applied Physics》2020,20(9):1073-1079
We study emissivity (ε)-dependent radiative heat transfer phenomena in remote and contact configurations. To demonstrate the emissivity-dependent radiative heating mode in a remote configuration, we fabricated miniature greenhouses covered with low (0.34)- and high-ε (0.86) polyethylene films and monitored temperatures on the floors, insides, and covers of the greenhouses during 24 h. The high-ε greenhouse yielded a 9-°C increase in floor temperature relative to the low-ε greenhouse at a one-sun solar irradiance because the high-ε film effectively trapped floor radiation. In contrast, the cover temperature remained lower in the high-ε greenhouse due to intensified radiation released from the high-ε film. This self-cooling effect was more evident when an emissive film was in physical contact with an object. While bare copper heated up to 55 °C, a high-ε film coated copper substrate was kept cooler by 4 and 2 °C compared with the bare and low-ε film coated copper samples, respectively.  相似文献   
10.
A facile and environmentally friendly approach has been developed to prepare yolk‐shell porous microspheres of calcium phosphate by using calcium L ‐lactate pentahydrate (CL) as the calcium source and adenosine 5′‐triphosphate disodium salt (ATP) as the phosphate source through the microwave‐assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk‐shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk‐shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as‐prepared yolk‐shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH‐responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk‐shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号